Math, asked by Ajaydhritlahre, 1 year ago

Express all trigonometric ratios in terms of cos A

Answers

Answered by tanayshah397p9ynmj
114

ANSWER IS GIVEN BELOW....

Attachments:
Answered by mysticd
75

Answer:

All trigonometric ratios in terms of cosA.

i) sinA= \sqrt{1-cos^{2}A}

ii ) tanA = \frac{\sqrt{1-cos^{2}A}}{cosA}

 iii) cot A =\frac{cosA}{\sqrt{1-cos^{2}A}}

 iv) secA = \frac{1}{cosA}

v) cosecA = \frac{1}{\sqrt{1-cos^{2}A}}

Step-by-step explanation:

We \: know \: the \\</p><p>Trigonometric\: identity:\\\boxed {sin^{2}A = 1-cos^{2}A}

Now ,

i) sinA= \sqrt{1-cos^{2}A}

ii ) tanA = \frac{sinA}{cosA}\\=\frac{\sqrt{1-cos^{2}A}}{cosA}

 iii) cot A = \frac{1}{tanA}\\=\frac{1}{\frac{\sqrt{1-cos^{2}A}}{cosA}}\\=\frac{cosA}{\sqrt{1-cos^{2}A}}

 iv) secA = \frac{1}{cosA}

v) cosecA = \frac{1}{sinA}\\=\frac{1}{\sqrt{1-cos^{2}A}}

•••♪

Similar questions