express as a product of trigonometric functions a) cos 2 + sin 4 b) sin 2 + sin 4c) sin 8+ cos 4 d) sin3+ sin
Answers
Answered by
1
Answer:
Consider the equation,
Case 1- 2sin4θcos2θ
sinA+sinB=2sin(
2
A+B
)cos(
2
A−B
)
=2sin(
2
6θ+2θ
)cos(
2
6θ−2θ
)
=2sin4θcos2θ
Case 2- 2sin2θcos4θ
sinA+sinB=2sin(
2
A+B
)cos(
2
A−B
)
=2cos(
2
6θ+2θ
)sin(
2
6θ−2θ
)
Case 3- 2sin2θsin4θ
cosA−cosB=−2sin(
2
A+B
)sin(
2
A−B
)
=−2sin(
2
6θ+4θ
)sin(
2
6θ−2θ
)
=2sin2θsin4θ
Case 4-2cos2θcos4θ
cosA−cosB=2cos(
2
A+B
)cos(
2
A−B
)
=2cos(
2
6θ+4θ
)cos(
2
6θ−4θ
)
=2cos2θcos4θ
Hence, Proved.
Similar questions