Math, asked by Sensiblestar, 1 month ago

Express as the sum of perfect square . x² + y² + z² + xy + yz - zx . Question - (2) if x - 1/x = 3/2. then find x² - 1/x² = ? x⁴ + 1/x⁴ = ? need verified Answer not spammed.​

Answers

Answered by mddilshad11ab
237

Question - ( i ) :-

Given expression :-

  • x² + y² + z² + xy + yz - zx

Solution and concept :-

To solve this expression at first we have to factories by applying identity.

Calculation begins :-

⟶ x² + y² + z² + xy + yz - zx

  • Here we have to add something but expression will be same without changing its expression.

↠ 1/2 *[2(x² + y² + z² + xy + yz - zx)]

↠ 1/2[2x² + 2y² + 2z² + 2xy + 2yz - 2zx]

↠1/2[x² + x² + y² + y² + z² + z² + 2xy + 2yz - 2zx]

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab

↠1/2[(x² + y² + 2xy) + (y² + z² + 2yz) + (z² + x² - 2zx)]

↠1/2[(x + y)² + (y + z)² + (z - x)²]

Hence,

The required answer for this expression:-

  • ↠1/2[(x + y)² + (y + z)² + (z - x)²]

Question - ( ii ) :-

Given :-

  • x - 1/x = 3/2

To Find :

  • x² - 1/x² = ? x⁴ + 1/x⁴ = ?

Solution :-

  • To calculate value of above expression at first we have to find the value of x by simplifying the given expression.

Calculation begins :-

↠x - 1/x = 3/2

↠x² - 1/x = 3/2

↠2x² - 2 = 3x

↠2x² - 3x - 2 = 0

  • Splitting the middle term :-

↠2x² - 4x + x - 2 = 0

↠2x(x - 2) + 1(x - 2) = 0

↠(2x + 1)(x - 2) = 0

Therefore, x = -1/2 or 2

  • Here we take x = 2 because negative value is not acceptable for the given expression.

Value of - 1/ =?

  • By putting x = 2 we get :-

↠2² - 1/2² ↠4 - 1/4 ↠16 - 1/4 ↠ 15/4

↠x² - 1/x² = 15/4

Value of x⁴ + 1/x⁴ = ?

  • By putting x = 2 we get :-

↠2⁴ + 1/2⁴ ↠ 16 + 1/16 ↠ 256 + 1/16 ↠ 257/16

↠x⁴ + 1/x⁴ = 257/16

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
197

First answer:

Information given to us:

  • x² + y² + z² + xy + yz - zx

We have to calculate:

  • We have to express them as the sum of perfect square

Calculations we are performing:

\red \bigstar \:  \underline{ \sf{multiplying \:  \dfrac{1}{2}  \: with \: x {}^{2}  + y {}^{2}   + z {}^{2}:- \ }}

:  \large{ \longmapsto}  \:  \:  \dfrac{1}{2}  \: ( \sf{   \:x {}^{2}  \:   +   \: y {}^{2} \:  + xy \:  + yz \:  -  \: zx)  }

\red \bigstar \:  \underline{ \sf{ Also \: multiplying \:  2  \: with \: x {}^{2}  + y {}^{2}   + z {}^{2}:- \ }}

:  \large{ \longmapsto}  \:  \:    \: \sf{ 2  \:x {}^{2}  \:   +   \: 2y {}^{2} \:  + 2xy \:  + 2yz \:  -  \: 2zx  }

\red \bigstar \:  \underline{ \sf{Splitting \: terms:- \ }}

:  \large{ \longmapsto}  \:  \:    \: \sf{ \: x {}^{2}  \:  + x {}^{2} \:  + y {}^{2}  \:  + y {}^{2}  \:   + z {}^{2}   \:  + z {}^{2}  +  \: 2xy \:  +  \: 2zx}

:  \large{ \longmapsto}  \:  \:    \: \sf{ 2  \:x {}^{2}  \:   +   \: 2y {}^{2} \:  + 2xy \:  + 2yz \:  -  \: 2zx  }

\red \bigstar \:  \underline{ \sf{By \: using \: this \: identity \: we would \: get:- \ }}

:  \implies \sf{(a + b) {}^{2} \:  =  \: a {}^{2}   \:  +  \: 2ab \:  + b {}^{2} }

\large{ \longmapsto} \:  \sf{ \dfrac{1}{2}  (\: x + y {}^{2} +  \: 2xy) }

 \large{ \longmapsto} \:  \sf{ \dfrac{1}{2} \:   [(\: x + y {}^{2} +  \: 2xy \: )(y {}^{2} \:  +  \: z {}^{2} \:  + 2yz)    ] }

And,

\red \bigstar \:  \underline{ \sf{By \: using \: this \: identity \: we would \: get:- \ }}

:  \implies \sf{(a - b) {}^{2} \:  =  \: a {}^{2}   \:  - 2ab \:  + b {}^{2} }

\large{ \longmapsto} \:  \sf{ \dfrac{1}{2} \: (z {}^{2} \:  +  \: x {}^{2}   \:  -  \: 2zx)}

\red \bigstar \:  \underline{ \sf{Now \: adding \: all \: of \: them :- \ }}

 \large{ \longmapsto} \:  \sf{ \dfrac{1}{2} \: (x {}^{2} \:  +  \: y {}^{2}   \:   +   \: 2xy) \:  +  \: (y {}^{2} \:  +  \: z {}^{2}   \:  +  \: 2yz \:  +  \: (z {}^{2}  \:  +  \: x {}^{2} \:  -  \: 2zx) }

\red \bigstar \:  \underline{ \sf{Therefore, \: sum \: of \: perfect \: squares \: would \: be  :- \ }}

:  \large{ \longmapsto} \:  \sf{ \dfrac{1}{2} \: [   \: (x   \: + y  \: ) {}^{2}  +  \: (y  \: +  z) {}^{2}   \:  +  \:  (z \:  -  \: x) {}^{2}  ] }

_________________

Second answer:

Information given to us:

  • \large{ \sf{x \:  -  \:  \dfrac{x}{1}  \:  =  \:  \dfrac{3}{2} }}

What we have to calculate:-

  •  \large{ \sf{x {}^{2}  \:    -    \:  \dfrac{1}{x {}^{2} }  \:    \:  \dfrac{{} }{} }}
  •  \large{ \sf{x {}^{4}  \:     +    \:  \dfrac{1}{x {}^{4} }  \:    \:  \dfrac{{} }{} }}

Performing calculations:-

\red \bigstar \:  \underline{ \sf{First \: we \: are \:finding \: out \: value \: of \: the \: variable \: x:- }}

:  \large{ \longmapsto} \:  \sf{x \:  -  \:  \dfrac{1}{x}  \:  =  \:  \dfrac{3}{2} }

\red \bigstar \:  \underline{ \sf{Taking \: L.CM.:- }}

:  \large{ \longmapsto} \:  \sf{x {}^{2}  \:  -  \:  \dfrac{1}{x}  \:  =  \:  \dfrac{3}{2} }

\red \bigstar \:  \underline{ \sf{Acq,:- }}

:  \large{ \longmapsto} \:  \sf{2x {}^{2}  \:  -  \:  2  \:  =  \:  3x }

\red \bigstar \:  \underline{ \sf{Changing \: the \: sides \: positive \: term \: would \: be \: negative:- }}

:  \large{ \longmapsto} \:  \sf{2x {}^{2}  \:  -  \:  3x  \:  - 2 \:  =  \:  0 }

Now,

:  \large{ \leadsto} \:  \sf{2x {}^{2}  - 4x  + x - 2 \:  =  \: 0 } \\  \large{  :  \: \leadsto}  \: \sf{2x(x - 2) \:  +  1(x  - 2)} \\   \large{ : \leadsto} \sf{} \: (2x + 1) \: (x - 2)

\red \bigstar \:  \underline{ \sf{Hence, \: value \: x \: would \: be \: 2 :- }}

As negative integers can't be accepted.

___________

✔️ Refer the attachment for further information and calculations

Attachments:
Similar questions