Express cos 2A in terms of cos 4A..
Answers
Answered by
13
Full SiteNavigation
cos 2A in Terms of A
Custom Search
Search
We will learn to express trigonometric function of cos 2A in terms of A. We know if A is a given angle then 2A is known as multiple angles.
How to proof the formula of cos 2A is equals cos2 A - sin2 A?
Or
How to proof the formula of cos 2A is equals 1 - 2 sin2 A?
Or
How to proof the formula of cos 2A is equals 2 cos2 A - 1?
We know that for two real numbers or angles A and B,
cos (A + B) = cos A cos B - sin A sin B
Now, putting B = A on both sides of the above formula we get,
cos (A + A) = cos A cos A - sin A sin A
⇒ cos 2A = cos2 A - sin2 A
⇒ cos 2A = cos2 A - (1 - cos2 A), [since we know that sin2 θ = 1 - cos2 θ]
⇒ cos 2A = cos2 A - 1 + cos2 A,
⇒ cos 2A = 2 cos2 A - 1
⇒ cos 2A = 2 (1 - sin2 A) - 1, [since we know that cos2 θ = 1 - sin2 θ]
⇒ cos 2A = 2 - 2 sin2 A - 1
⇒ cos 2A = 1 - 2 sin2 A
cos 2A in Terms of A
Custom Search
Search
We will learn to express trigonometric function of cos 2A in terms of A. We know if A is a given angle then 2A is known as multiple angles.
How to proof the formula of cos 2A is equals cos2 A - sin2 A?
Or
How to proof the formula of cos 2A is equals 1 - 2 sin2 A?
Or
How to proof the formula of cos 2A is equals 2 cos2 A - 1?
We know that for two real numbers or angles A and B,
cos (A + B) = cos A cos B - sin A sin B
Now, putting B = A on both sides of the above formula we get,
cos (A + A) = cos A cos A - sin A sin A
⇒ cos 2A = cos2 A - sin2 A
⇒ cos 2A = cos2 A - (1 - cos2 A), [since we know that sin2 θ = 1 - cos2 θ]
⇒ cos 2A = cos2 A - 1 + cos2 A,
⇒ cos 2A = 2 cos2 A - 1
⇒ cos 2A = 2 (1 - sin2 A) - 1, [since we know that cos2 θ = 1 - sin2 θ]
⇒ cos 2A = 2 - 2 sin2 A - 1
⇒ cos 2A = 1 - 2 sin2 A
ekatu:
cos4A=cos^2A-sin^2A
Answered by
26
✧══════•❁❀❁•══════✧
√(1 + cos 4A)/2
cos² 2A = (2 cos² 2A)/2
= (1 - 1 + 2cos²2A)/2
= [(1 + (2 cos²(2A) - 1)/2]
∴ cos 2A = 2 cos² A - 1
= [1 + cos2(2A)/2]
= [1 + cos4A/2]
Now,
We know that cos²(2A) = [1 + cos4A]/2
cos 2A = √(1 + cos 4A)/2
Hope it helps!
✧══════•❁❀❁•══════✧
√(1 + cos 4A)/2
cos² 2A = (2 cos² 2A)/2
= (1 - 1 + 2cos²2A)/2
= [(1 + (2 cos²(2A) - 1)/2]
∴ cos 2A = 2 cos² A - 1
= [1 + cos2(2A)/2]
= [1 + cos4A/2]
Now,
We know that cos²(2A) = [1 + cos4A]/2
cos 2A = √(1 + cos 4A)/2
Hope it helps!
✧══════•❁❀❁•══════✧
Similar questions