express cos 5A in terms of Cos A
Answers
Answer:
From D Moivre's Theorem,
cos(5a) + i*sin(5a) = [cos(a) + i*sin(a)]^5
cos(5a) + i*sin(5a) = cos^5(a) + 5*cos^4(a)*i*sin(a) + 10*cos^3(a)*i^2*sin^2(a) + 10*cos^2(a)*i^3*sin^3(a) + 5*cos(a)*i^4*sin^4(a) + i^5*sin^5(a)
cos(5a) + i*sin(5a) = [cos^5(a) - 10*cos^3(a)*sin^2(a) + 5*cos(a)*sin^4(a)] + i[5*cos^4(a)*sin(a) - 10*cos^2(a)*sin^3(a) + sin^5(a)]
Cos5A = 4cos³A( 1 - 2sin²A ) - cosA( 3 - 8sin⁴A)
GIVEN: cos 5A
TO FIND: Representing cos5A in terms of cosA
SOLUTION:
As we are given in the question,
cos 5A
The following identities shall be used to expand the given expressions:
cos(A+B) = cosAcosB -sinAsinB
sin2A = 2sinAcosA
cos2A = 1-2sin²A
sin3A = 3sinA -4sin³A
cos3A = 4cos³A -3cosA
As we are given with,
cos 5A
= cos(3A+2A)
= cos3Acos2A -sin3Asin2A
= (4cos³A -3cosA)(1-2sin²A) - (3sinA -4sin³A)(2sinAcosA)
=[4cos³A - 8cos³Asin²A - 3cosA + 6cosAsin²A]-[6sin²AcosA - 8sin⁴AcosA]
= 4cos³A - 8cos³Asin²A - 3cosA + 6cosAsin²A - 6sin²AcosA + 8sin⁴AcosA
= 4cos³A - 8cos³Asin²A - 3cosA + 8sin⁴AcosA
= 4cos³A( 1 - 2sin²A ) - cosA( 3 - 8sin⁴A)
Therefore,
Cos5A = 4cos³A( 1 - 2sin²A ) - cosA( 3 - 8sin⁴A)
#SPJ2