Math, asked by Anonymous, 1 month ago

Express Cos A, tan A, sec A in terms of sin A.​

Answers

Answered by brainlyyourfather
5

Answer:

cosA= 1−sin 2 A →(1)as, cos 2 θ+sin 2 θ=1

tanA= cosAsinA

= 1−sin 2 AsinA ( from (1) ) & secA= cosA1

= 1−sin A1 ( From (1) )so, cosA= 1−sin 2 A

,tanA= 1−sin 2 AsinA

&

secA= 1−sin 2 A1

Answered by MenakaQueen
6

Since,cos²A+sin²A=1

cos²A=1-sin²A

cosA=+-

 \sqrt{1 - {sin}^{2} } a

Here A is acute

& cosA is positive when A is acute

so, cosA=

 \sqrt{1 -  {sin}^{2} } a

secA

secA =

 \frac{1}{cos \: a}

secA=

 \frac{1}{ \sqrt{1 -  {sin}^{2} \: a} }

Similar questions