Math, asked by Anonymous, 11 months ago

Express cos∅ in terms of cot∅.

Answers

Answered by Anonymous
4

Hey mate☺

See the attachment.

I hope it helps you

Attachments:
Answered by Anonymous
16

SOLUTION

Consider,

 =  > tan \theta =  \frac{1}{cot \theta}  \\  =  > tan {}^{2}  \theta =   \frac{1}{ {cot}^{2} \theta }  =  {sec}^{2}  \theta  - 1 =  \frac{1}{ {cot}^{2}  \theta}  \\  =  >  {sec}^{2}  \theta =  \frac{1}{ {cot}^{2}  \theta}   + 1 =  {sec}^{2}  \theta =  \frac{1 +  {cot}^{2} \theta }{ {cot}^{2}  \theta}  \\  \\  =  > sec \theta =  \sqrt{ \frac{1 +  {cot}^{2} \theta }{ {cot}^{2}  \theta} }  =  \frac{1}{cos \theta}  =  \sqrt{ \frac{1 +  {cot}^{2} \theta }{cot {}^{2}  \theta } }  \\  \\  =   > cos \theta =  \sqrt{ \frac{cot {}^{2}  \theta }{1 +  {cot}^{2} \theta } }  =  \frac{cot \theta}{ \sqrt{1 +  {cot}^{2} \theta } }  \\  =  > cos \theta =  \frac{cot \theta}{ \sqrt{1 +  {cot}^{2}  \theta} }

Similar questions