Math, asked by leejawchitrakar, 23 days ago

Express cos2A in terms of tanA

Answers

Answered by MrElegant01
2

Step-by-step explanation:

cos 2A = cos2 A - sin2 A

cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A

cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)

cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)⇒ cos 2A = 1sec2A(1 - tan2 A)

cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)⇒ cos 2A = 1sec2A(1 - tan2 A)⇒ cos 2A = 1−tan2A1+tan2A

Answered by chandan454380
0

Answer:

 \frac{1 -\tan ^ {2} a }{1  +\tan ^ {2} a }

Step-by-step explanation:

As we know

Now multiplying by

 { \cos }^{2} a \:

in the numerator and denominator

   = { \cos }^{2} a \:  -  { \sin}^{2} a \\   \times  \frac{{ \cos }^{2} a}{{ \cos }^{2} a}

  =  \frac{(1 - { \ \tan }^{2} a)}{ \sec^{2} a }

since,1/cos a = sec a

1 +  \tan^{2} a \:  =  \sec^{2} a

 =  \frac{1 -  \tan^{2} a}{1  +  \tan^{2} a}

hope it helps

Similar questions
Math, 9 months ago