Express cos2A in terms of tanA
Answers
Answered by
2
Step-by-step explanation:
cos 2A = cos2 A - sin2 A
cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A
cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)
cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)⇒ cos 2A = 1sec2A(1 - tan2 A)
cos 2A = cos2 A - sin2 Acos 2A = cos2A−sin2Acos2A ∙ cos2 A⇒ cos 2A = cos2 A (1 - tan2 A)⇒ cos 2A = 1sec2A(1 - tan2 A)⇒ cos 2A = 1−tan2A1+tan2A
Answered by
0
Answer:
Step-by-step explanation:
As we know
Now multiplying by
in the numerator and denominator
since,1/cos a = sec a
hope it helps
Similar questions