Math, asked by skirfan0294, 4 months ago

express cos30°×sin20° as the sum or difference​

Answers

Answered by Abhi747Raje
0

Answer:

cos30 × sin20  =  [cos^2 30.sin10] - [sin30.cos30.cos10]

Step-by-step explanation:

cos30 × sin20

= cos30 × sin(90-70)

= cos30 × cos70          ---------[ sin(90-A) = cosA ]

= cos30 × cos(60+10)

= cos30 × {sin60.sin10 - cos60.cos10}    

                             ---------[ cos(A +B) = sinA.sinB - cosA.cosB ]

= cos30.sin60.sin10 - cos60.cos10.cos30

= cos30.cos30.sin10 - sin30.cos30.cos10    

                              ---------[ sin(90-A) = cosA ; cos(90-A) = sinA  ]

= cos^2 30.sin10 - sin30.cos30.cos10

so,

cos30 × sin20  =  [cos^2 30.sin10] - [sin30.cos30.cos10]

Hope this helps you :)

Mark me as Brainlist

Similar questions