Math, asked by tarun665, 7 months ago

express cosce(x+iy) as A+iB​

Answers

Answered by SrijanShrivastava
1

 \cosec(x + yi)  =  \frac{1}{ \sin(x + yi) }

 =  \frac{1}{ \sin(x)  \cos(iy)  +  \cos(x)  \sin(iy) }

 =  \frac{1}{ \sin(x)  \cosh(y) + i \cos(x)  \sinh(y) }

 =  \frac{ \sin(x) \cosh(y)   - i \cos(x)  \sinh(y) }{ { \sin }^{2} (x) \cosh ^{2} (x) +  { \cos}^{2}(x)  { \sinh}^{2}(x)  }

  \sf=(  \frac{ \sin(x) \cosh(y)    }{ { \sin }^{2} (x) \cosh ^{2} (x) +  { \cos}^{2}(x)  { \sinh}^{2}(x)  } )  -  \it{i} \sf ( \frac{\cos(x)  \sinh(y) }{ { \sin }^{2} (x) \cosh ^{2} (x) +  { \cos}^{2}(x)  { \sinh}^{2}(x)  } )

where, sinh(x) and cosh(x) are the hyperbolic sine and cosine functions.

Similar questions