Math, asked by rahul761776, 1 month ago

Express cosec 69°+cot 69°n terms of trigonometric ratios of angles between 0° and 45°​

Answers

Answered by MathCracker
46

Question :-

Express cosec 69°+cot 69°n terms of trigonometric ratios of angles between 0° and 45°

Solution :-

We know that,

  • cos A = sin(90° - A)
  • cot A = tan(90° - A)
  • cosec A = sec(90° - A)

By using,

\sf:\longmapsto{  \cosec 69 \degree =  \sec(90 \degree - 69 \degree) } \\  \\ \bf:\longmapsto \red{\cosec 69 \degree = \sec21 \degree  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ \cot69 \degree =  \tan(90 \degree - 69 \degree)  } \:  \:  \:  \\  \\ \bf:\longmapsto \red{ \cos69 \degree =  \tan21 \degree  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence,

\bf:\longmapsto \red{ \cosec69 \degree +  \cot69 \degree =  \sec21 \degree +  \tan21 \degree  }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Trigonometry Table :-

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}

Answered by Anonymous
4

We know that,

  • cos A = sin(90° - A)
  • cot A = tan(90° - A)
  • cosec A = sec(90° - A)

By using,

⟼cosec69°=sec(90°−69°)

⟼cosec69°=sec21°

:⟼cot69°=tan(90°−69°)

:⟼cos69°=tan21°

Hence

⟼cosec69°+cot69°=sec21°+tan21°

Trigonometry Table :-

Refer to the attachment

Attachments:
Similar questions