Math, asked by sugunanikhil06, 1 month ago

Express Cosec a in terms of sec a​

Answers

Answered by aaloksurve14
0

Answer:

what is this question tell

Answered by educatofficial
1

Answer:

 \csc( \alpha  )  =  \sqrt{\frac{\sec^{2}( \alpha )}{\sec^{2}( \alpha ) - 1}}

Step-by-step explanation:

 \csc( \alpha )  =  \frac{1}{ \sin( \alpha ) }

 \sec( \alpha ) =  \frac{1}{ \cos( \alpha ) }

we know that ,

 { \sin^{2}( \alpha ) }  +   \cos^{2}( \alpha ) = 1

so,

 \frac{1}{ \csc^{2}( \alpha )} +  \frac{1}{\sec^{2}( \alpha )} = 1

 \frac{1}{ \csc^{2}( \alpha )}  = 1 -  \frac{1}{\sec^{2}( \alpha )}

 \frac{1}{ \csc^{2}( \alpha )}  =   \frac{\sec^{2}( \alpha ) - 1}{\sec^{2}( \alpha )}

 { \csc^{2}( \alpha )}  =   \frac{\sec^{2}( \alpha )}{\sec^{2}( \alpha ) - 1}

square root on both sides

 \csc( \alpha  )  =  \sqrt{\frac{\sec^{2}( \alpha )}{\sec^{2}( \alpha ) - 1}}

Similar questions