express (costheta + isintheta/sintheta + icostheta)^6 in the form of x+iy.
Answers
Answered by
0
Step-by-step explanation:
(costheta + isintheta/sintheta + icostheta)^6
=(costheta + isintheta)^6 / (sintheta + icostheta)^6
=(cos6theta + isin6theta)/ ((cos(6pi/2-6theta)+isin(6pi2-6theta))
=(cos6theta + isin6theta)/(cos((540-6theta)+isin(540-6theta))
=(cos6theta + isin6theta)/(cos((180-6theta)+isin(180-6theta))
=(cos6theta + isin6theta)/(-cos(6theta)+isin(6theta))
=(cos6theta + isin6theta)/(-cos(6theta)+isin(6theta)) * (cos6theta + isin6theta)/(cos(6theta)+isin(6theta)
=(cos6theta + isin6theta)^2/((isin(6theta))^2-(cos6theta)^2)
=(cos12theta + isin12theta)/(-(sint6theta)^2-(cos6theta)^2)
here i^2=- 1
=(cos12theta + isin12theta)/(-((sint6theta)^2+(cos6theta)^2))
=(cos12theta + isin12theta)/-1
=(-cos12theta)+i(-sin12theta)
Similar questions
English,
3 months ago
French,
3 months ago
CBSE BOARD XII,
6 months ago
English,
11 months ago
English,
11 months ago