Express each of the following as a product af prime factors only in exponential form
(plz answer correctly)
a-108 × 192
b-729 × 64
c-270
d-768
Answers
Answer:
a) 108\times 192=2^8\times 3^4108×192=2
8
×3
4
b) 270= 2\times 3^3\times 5270=2×3
3
×5
c) 729\times 64= 3^6\times 2^6729×64=3
6
×2
6
d) 768= 2^8\times 3768=2
8
×3
Step-by-step explanation:
To find : Express each of the following as a product of prime factors only in exponential form ?
Solution :
a) 108\times 192108×192
Factor the numbers,
108\times 192=(2\times 2\times3\times3\times3)\times (2\times 2\times2\times2\times 2\times2\times3)108×192=(2×2×3×3×3)×(2×2×2×2×2×2×3)
108\times 192= (2^2 \times 3^3)\times (2^6\times 3)108×192=(2
2
×3
3
)×(2
6
×3)
Using identity : a^m\times a^n = a^{m + n}a
m
×a
n
=a
m+n
108\times 192= 2^6 + 2\times3^3 + 1108×192=2
6
+2×3
3
+1
108\times 192=2^8\times 3^4108×192=2
8
×3
4
b) 270
Factor the number,
270= 2\times 3\times 3\times 3\times 5270=2×3×3×3×5
270= 2\times 3^3\times 5270=2×3
3
×5
c) 729\times 64
Factor the number,
729\times 64= (3\times 3\times 3\times 3\times 3\times 3)\times (2\times 2\times 2\times 2\times 2\times 2)729×64=(3×3×3×3×3×3)×(2×2×2×2×2×2)
729\times 64= 3^6\times 2^6729×64=3
6
×2
6
d) 768
Factor the number,
768= 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 3768=2×2×2×2×2×2×2×2×3
768= 2^8\times 3768=2
8
×3