Math, asked by deepu5123, 10 months ago

Express each of the following as radicals (25)¾​

Answers

Answered by ashasetia1201
1

Answer:

GIVEN :

The expression is (\frac{13}{21})^{\frac{2}{5}}(

21

13

)

5

2

TO FIND :

The given expression in the radical form

SOLUTION :

Given expression is (\frac{13}{21})^{\frac{2}{5}}(

21

13

)

5

2

To express the given expression as a radical:

(\frac{13}{21})^{\frac{2}{5}}(

21

13

)

5

2

By using the formula in fractional exponent :

(\frac{a}{b})^m=\frac{a^m}{b^m}(

b

a

)

m

=

b

m

a

m

=\frac{(13)^{\frac{2}{5}}}{(21)^{\frac{2}{5}}}=

(21)

5

2

(13)

5

2

=\frac{(13)^{2.(\frac{1}{5})}}{(21)^{2.(\frac{1}{5})}}=

(21)

2.(

5

1

)

(13)

2.(

5

1

)

By using the formula in fractional exponent :

a^{mn}=(a^m)^na

mn

=(a

m

)

n

=\frac{(13^2)^{\frac{1}{5}}}{(21^2)^{\frac{1}{5}}}=

(21

2

)

5

1

(13

2

)

5

1

=\frac{(169)^{\frac{1}{5}}}{(441)^{\frac{1}{5}}}=

(441)

5

1

(169)

5

1

=\frac{\sqrt[5]{169}}{\sqrt[5]{441}}=

5

441

5

169

By using the square root of division property:

For b\neq 0b≠0 \frac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\frac{a}{b}}

n

b

n

a

=

n

b

a

=\sqrt[5]{\frac{169}{441}}=

5

441

169

∴ (\frac{13}{21})^{\frac{2}{5}}=\sqrt[5]{\frac{169}{441}}(

21

13

)

5

2

=

5

441

169

∴ the given expression (\frac{13}{21})^{\frac{2}{5}}(

21

13

)

5

2

as a radical form is \sqrt[5]{\frac{169}{441}}

5

441

169

Answered by pc010191
2

Answer:

plzzzz koi acche se bta do plzzzzzz

Similar questions