Math, asked by choudharyshilpee6, 10 months ago

express each of the following as rational numbers​

Attachments:

Answers

Answered by prince5132
17

GIVEN :-

 \implies \bf \bigg \{ \bigg( \dfrac{4}{3}  \bigg) ^{ - 1}  -  \bigg( \dfrac{1}{4}  \bigg) ^{ - 1}  \bigg \} ^{ - 1}

TO FIND :-

\implies \bf \: the \: value \: of  \: \bigg \{ \bigg( \dfrac{4}{3}  \bigg) ^{ - 1}  -  \bigg( \dfrac{1}{4}  \bigg) ^{ - 1}  \bigg \} ^{ - 1}

SOLUTION :-

\implies \bf \bigg \{ \bigg( \dfrac{4}{3}  \bigg) ^{ - 1}  -  \bigg( \dfrac{1}{4}  \bigg) ^{ - 1}  \bigg \} ^{ - 1}  \\  \\  \implies \bf \bigg \{ \bigg( \dfrac{3}{4}  \bigg) -  \bigg( \dfrac{4}{1}\bigg) \bigg \} ^{ - 1}  \\  \\  \implies \bf \bigg \{ \bigg( \dfrac{3}{4}\bigg) \:  -  \bigg( \dfrac{4 \times 4}{1 \times 4} \bigg) \bigg \} ^{ - 1}  \\  \\  \implies \bf \bigg \{ \bigg( \dfrac{3 - 16}{4} \bigg) \bigg \} ^{ - 1}  \\  \\  \implies \bf \bigg \{ \dfrac{ - 13}{4}  \bigg \} ^{ - 1}   \\  \\  \implies \boxed{ \red{ \bf \bigg \{ \dfrac{ - 4}{13}  \bigg \}}}

Hence the required answer is-4/13.

ADDITIONAL INFORMATION :-

\boxed{\begin{minipage}{7cm} \\ \sf{ $  \implies \bf \sqrt[n]{ \sqrt[m]{ \sqrt[p]{((a^{x} )^{y}) ^{z}  } } }  = (a ^{xyz} )^{ \frac{1}{mnp} }  = a ^{ \frac{xyz}{mnp} }$} \\ \\ \sf{ $ \implies a^m \times a^n = a^{m+n}$} \\  \\  \sf{$ \implies {a}^{m} \times b^m = ab^m $} \\  \\ \sf{$ \implies \dfrac{a^m}{a^n} = a^{m - n} ( \tt{ If  \: m  > n} ) $} \\  \\ \sf{$ \implies \dfrac{a^m}{ a^n} = \dfrac{ 1}{ a^{n-m} } ( \tt{ If  \: n > m )}$} \\  \\ \sf{$ \implies (a^m)^n = a^{mn}$ } \\  \\ \sf{$ \implies a^{-n} = \dfrac{1}{ a^n}$}\end{minipage}}

Answered by Anonymous
37

QUESTION:-

✯.EXPRESS EACH OF THE FOLLOWING AS RATIONAL NUMBERS.

 \star \sf \bigg \{ \bigg[ \dfrac{4}{3}  \bigg] ^{ - 1}  -  \bigg[ \dfrac{1}{4}  \bigg] ^{ - 1}  \bigg \} ^{ - 1}

ANSWER

\large\underline\bold{GIVEN,}

 \therefore \sf \bigg \{ \bigg[ \dfrac{4}{3}  \bigg] ^{ - 1}  -  \bigg[ \dfrac{1}{4}  \bigg] ^{ - 1}  \bigg \} ^{ - 1}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow value\:(express)\:of\:the\:given\:rational\:number,

✯. IDENTITY IN USE,

\sf\dashrightarrow a^{-1}= \dfrac{1}{a}

\large\underline\bold{SOLUTION,}

\sf\implies \bigg \{ \bigg( \dfrac{4}{3}  \bigg) ^{ - 1}  -  \bigg( \dfrac{1}{4}  \bigg) ^{ - 1}  \bigg \} ^{ - 1}

\sf\implies \bigg \{ \bigg( \dfrac{3}{4}  \bigg)  -  \bigg( \dfrac{1}{4}  \bigg) ^{ - 1}  \bigg \} ^{ - 1}

\sf\implies \bigg \{ \bigg( \dfrac{3}{4}  \bigg) -  \big( 4\big) \bigg \} ^{ - 1}

\sf\implies \bigg \{ \bigg( \dfrac{3}{4}  \bigg) -  \bigg( \dfrac{4}{1}\bigg) \bigg \} ^{ - 1}

\sf\implies \bigg \{ \bigg( \dfrac{3}{4}\bigg)  -  \bigg( \dfrac{4 \times 4}{1 \times 4} \bigg) \bigg \} ^{ - 1}

\sf\implies \bigg \{ \bigg( \dfrac{3 - 16}{4} \bigg) \bigg \} ^{ - 1}

\sf\therefore a^{-1}= \dfrac{1}{a}

\sf\implies \bigg \{ \dfrac{ - 4}{13}  \bigg \}

\large{\boxed{\bf{\implies  \bigg( \dfrac{- 4}{13} \bigg) }}}

____________________________

✯ADDITIONAL INFORMATION,

FEW IDENTITIES TO LEARN,

\sf\therefore (a+b)^2=a^2+2ab+b^2

\sf\therefore (a+b)(a-b)=a^2-b^2

\sf\therefore (a+b)^2+(a-b)^2=2(a^2+b^2)

\sf\therefore (a+b)^3=a^3+b^3+3ab(a+b)

____________________________

Similar questions