Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
(i)sin 59° + cos 56°
(ii)tan 65° + cot 49°
(iii)sec 76° + cosec 52°
(iv)cos 78° + sec 78°
Answers
Answered by
79
(i) SOLUTION :
Given : sin 59° + cos 56°
sin 59° + cos 56° = sin (90° - 31°) + cos (90° - 34°)
= cos 31° + sin 34°
[sin (90 - θ) = cos θ , cos (90 - θ) = sin θ]
Hence , sin 59° + cos 56° = cos 31° + sin 34°
(ii) SOLUTION :
Given : tan 65° + cot 49°
tan 65° + cot 49° = tan (90° - 25°) + cot (90° - 41°)
= cot 25° + tan 41°
[tan (90 - θ) = cot θ , cot (90 - θ) = tan θ]
Hence, tan 65° + cot 49° = cot 25° + tan 41°
(iii) SOLUTION :
Given : sec 76° + cosec 52°
sec 76° + cosec 52° = sec (90° - 14°) + cosec (90° - 38°)
= cosec 14° + sec 38°
[sec (90 - θ) = cosec θ , cosec (90 - θ) = secθ]
Hence, sec 76° + cosec 52° = cosec 14° + sec 38°
(iv) SOLUTION :
Given : cos 78° + sec 78°
cos 78° + sec 78° = cos (90° - 12°) + sec (90° - 12° )
= sin 12° + cosec 12°
[cos (90 - θ) = sin θ , sec (90 - θ) = cosec θ ]
Hence, cos 78° + sec 78° = sin 12° + cosec 12°
HOPE THIS ANSWER WILL HELP YOU...
Answered by
26
hey mate
here is your answer
sin a=cos (90-a)
sec a=cosec (90-a)
tan a=cot (90-a)
thus,
1- cos(90-59)+ sin (90-56)
=>cos 31+ sin 34
2- tan 65+ cot 49
=>cot (90-65) +tan (90-49)
=>cot 25+cot 41
3- sec 76+cosec 52
=>cosec (90-76)+sec( 90-52)
=>cosec 14+sec 38
4- cos 78+ sec 78
=>sin (90-78) +cosec (90-78)
=>sin 12+ cosec 12
here is your answer
sin a=cos (90-a)
sec a=cosec (90-a)
tan a=cot (90-a)
thus,
1- cos(90-59)+ sin (90-56)
=>cos 31+ sin 34
2- tan 65+ cot 49
=>cot (90-65) +tan (90-49)
=>cot 25+cot 41
3- sec 76+cosec 52
=>cosec (90-76)+sec( 90-52)
=>cosec 14+sec 38
4- cos 78+ sec 78
=>sin (90-78) +cosec (90-78)
=>sin 12+ cosec 12
Similar questions