Math, asked by wer2viol3eshekPatel, 1 year ago

express i^-35 in the form of a+ib

Answers

Answered by ARoy
164
i⁻³⁵
=i⁻³⁴⁻¹
=(i²)⁻¹⁷×(i⁻¹)
=(-1)⁻¹⁷(1/i)
=1/(-1)¹⁷(1/i)
=(-1)(1/i)
=-1/i
=0+i(-1/i²)
=0+i(-1/-1)
=0+i.1
where a=0, b=1
Answered by pinquancaro
50

Answer:

i^{-35}=0+i

Step-by-step explanation:

Given : Expression i^{-35}

To find : Express expression in the form of a+ib ?

Solution :

Write expression as,

i^{-35}=i^{-34-1}

i^{-35}=i^{-34}\times i^{-1}

i^{-35}=(i^2)^{-17}\times i^{-1}

We know that, i^2=-1

i^{-35}=(-1)^{-17}\times i^{-1}

i^{-35}=\frac{1}{(-1)^{17}}\times i^{-1}

i^{-35}=\frac{1}{-1}\times i^{-1}

i^{-35}=-i^{-1}

i^{-35}=-\frac{1}{i}

Multiply and divide by i,

i^{-35}=-\frac{1}{i}\times \frac{i}{i}

i^{-35}=-\frac{i}{i^2}

i^{-35}=-\frac{i}{-1}

i^{-35}=i

i^{-35}=0+i

i.e. In the form of a+ib i^{-35}=0+i

Where, a=0 and b=1.

Similar questions