Express i9+i19 in the form of a+ib
Answers
Step-by-step explanation:
The required form is i^9 + i^{19}=0+0ii
9
+i
19
=0+0i .
Step-by-step explanation:
Given : Expression i^9 + i^{19}i
9
+i
19
.
To find : Express the given complex no. in the form a + ib ?
Solution :
The expression is re-written as,
i^9 + i^{19}=(i^3)^3+i^{4\times 5-1}i
9
+i
19
=(i
3
)
3
+i
4×5−1
i^9 + i^{19}=(i^2\cdot i)^3+(i^4)^{5}\cdot (i)^{-1}i
9
+i
19
=(i
2
⋅i)
3
+(i
4
)
5
⋅(i)
−1
i^9 + i^{19}=(i^2\cdot i)^3+((i^2)^2)^{5}\cdot (i)^{-1}i
9
+i
19
=(i
2
⋅i)
3
+((i
2
)
2
)
5
⋅(i)
−1
We know that, i^2=-1i
2
=−1
i^9 + i^{19}=(-i)^3+(1)^{5}\cdot (i)^{-1}i
9
+i
19
=(−i)
3
+(1)
5
⋅(i)
−1
i^9 + i^{19}=-(-i)+\frac{1}{i}i
9
+i
19
=−(−i)+
i
1
i^9 + i^{19}=\frac{i^2+1}{i}i
9
+i
19
=
i
i
2
+1
i^9 + i^{19}=\frac{-1+1}{i}i
9
+i
19
=
i
−1+1
i^9 + i^{19}=0i
9
+i
19
=0
The complex number into a+ib form is i^9 + i^{19}=0+0ii
9
+i
19
=0+0i .
Where, a=0 and b=0