Math, asked by manikandanwrpi2408, 10 months ago

Express in p /q form (i) 5.1111….(ii) 0.2 (iii) 1.6323232… (iv) 0.404040…..

Answers

Answered by mysticd
11

 i) Let \: x = 5.\bar{1} \: --(1)

/* Multiplying equation (1) by 10, we get */

 \implies 10x = 51.\bar{1} \: --(2)

/* Subtract equation (1) from equation (2), we get */

 \implies 9x = 46

 \implies x = \frac{46}{9} \: \blue{ (\frac{p}{q} \: form )}

 ii)Given \: decimal \:form = 0.2

 = 0.2 \times \frac{10}{10}

 = \frac{2}{10}

 = \frac{1}{10} \: \blue{ (\frac{p}{q} \: form )}

 iii) Let \: y = 1.6\bar{32} \: --(4)

/* Multiplying equation (1) by 10, we get */

 \implies 10x = 16.\bar{32} \: --(5)

/*Multiplying equation (5) by 100, we get */

 \implies 1000x = 1632.\bar{32} \: --(6)

/* Subtract equation (5) from equation (6), we get */

 \implies 990x = 1616

 \implies x = \frac{1616}{990}

 = \frac{808}{495} \: \blue{ (\frac{p}{q} \: form )}

 \therefore \red{ 1.6323232\ldots}\green{=\frac{808}{495}}

 iv) Let \: z = 0.404040 \ldots \:--(7)

/* Multiplying equation (7) by 100 , we get */

 \implies 100z = 40.\bar{40} \: --(8)

/* Subtract equation (7) from equation (8), we get */

 \implies 99z = 40

 \implies z = \frac{40}{99} \:  \blue{( \frac{p}{q} \: form )}

 \therefore \red{ 0.404040 \ldots} \green {= \frac{40}{99}}

•••♪

Similar questions