Math, asked by liki97, 2 days ago

Express in simplest form (a) 2/3 + 1/6 (b) 3/4 + 5/8​

Answers

Answered by Atlas99
23

Step-by-step explanation:

(a) \:  \dfrac{2}{3} +  \dfrac{1}{6}

Take LCM = 6

 =  \dfrac{2 \times 2}{3 \times2} +  \dfrac{1}{6}

 \:

 =  \dfrac{4}{6} +  \dfrac{1}{6}

 \:

 =  \dfrac{4 + 1}{6}

 \:

 =  \boxed{\dfrac{5}{6}.}

\rule{200pt}{1pt}

(b)\:\dfrac{3}{4} +  \dfrac{5}{8}

Take LCM = 8

 =  \dfrac{3 \times 2}{4 \times 2} +  \dfrac{5}{8}

 \:

 =  \dfrac{6}{8} +  \dfrac{5}{8}

 \:

 =  \dfrac{6 + 5}{8}

 \:

 =  \boxed{\dfrac{11}{8}= 1\dfrac{3}{8}}.

Answered by YourHelperAdi
6

Hi Mate ! Here are your Answers :

__________________________

1]

  \large\tt{ \frac{2}{3}  +  \frac{1}{6}  }

As we know, if the denominator are not same, we take their LCM and change the numerator according to it .

So, LCM of 3 and 6

= 6

  \large\tt{ hence \:   \frac{2}{3}  = \frac{2 \times 2}{3 \times 2}}

 \large\implies \tt{ \frac{2}{3}  =  \frac{4}{6} }

 \large\tt{and \:  \frac{1}{6}  =  \frac{1}{6} }

Hence,

 \large\tt{ \frac{1}{6}  +  \frac{2}{3} }

 \large\tt{ =  \frac{1}{6}  +  \frac{4}{6} }

 \large\tt{ =  \frac{4 + 1}{6} }

 \red{ \underline{ \boxed{ \tt{ \implies \:  \frac{1}{6}  +  \frac{2}{3}   = \frac{5}{6} }}}}

__________________________

2]

 \large{ \tt{ \frac{3}{4}  +  \frac{5}{8} }}

As we know, here also the denominator are not same , so we will take there LCM .

LCM of 8 and 4

= 8

 \large\tt{ hence \:  \frac{3}{4}  =  \frac{3 \times 2}{4 \times 2}}

 \large\tt{ \implies  \frac{3}{4}  =  \frac{6}{8} }

 \large\tt{and \:  \frac{5}{8}  =  \frac{5}{8} }

Hence,

 \large\tt{ \frac{3}{4}  +  \frac{5}{8} }

 \large\tt{ =  \frac{6}{8}  +  \frac{5}{8}}

 \large\tt{  =  \frac{5 + 6}{8} }

  \green{ \underline{ \boxed{\tt{ \implies \:  \frac{3}{4}  +  \frac{5}{8}  =  \frac{11}{8}} }}}

You can also write it as, (if you want) :

 \large\tt{ \frac{11}{8}  = 1 \frac{3}{8} }

Similar questions