Math, asked by Pjal7140, 1 day ago

Express in the form of `a+ib:(1+i)(1+i)^(-1)`

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

given \: complex \: number \: is \\ z = a + ib = [(1 + i)(1 + i)] {}^{ - 1}  \\  \\  =  \frac{1}{(1 + i)(1 + i)}  \\  \\  =  \frac{1}{1 + i {}^{2} + 2i }  \\  \\  =  \frac{1}{1 - 1 + 2i}  \\  \\  =  \frac{1}{2i}  \\  \\  =  \frac{1}{2i}  \\  \\  =  \frac{1}{2i}  \times  \frac{ - 2i}{ - 2i}  \\  \\  =  \frac{ - 2i}{ - 4i {}^{2} }  \\  \\  =  \frac{ - 2i}{ - 4( - 1)}  \\  \\  =  \frac{ - 2i}{4}  \\  \\  =  -  \frac{i}{2}  \\  \\ a + ib = 0  -  \frac{i}{2}

Similar questions