express in the Form Of p/q if 0.3333
Answers
Answered by
1
Let, x=0.3333333...........=0.
3
ˉ
.....(i)
Multiplying on both sides by '10' we get,
10x=3.333333...........=3.
3
ˉ
.........(ii)
Subtract (i) from (ii) we get,
9x=3.0000000........=3
x=
9
3
=
3
1
I.e., 0.33333........=0.
3
ˉ
=
3
1
Which is in the form of
q
p
. Where p and q are integers.
Answered by
0
Answer:
The p/q form of 0.3333 will be 3332.6667/9999
Step-by-step explanation:
Let us consider, x = 0.3333
Multiply both the terms by 10000
10000x = 3333
10000x - x = 3333 - 0.3333
9999x = 3332.6667
x = 3332.6667 / 9999
Similar questions