Math, asked by ammydrone, 1 year ago

express it in a vomplex number in the form of r(cos theta + i sin theta)​

Attachments:

Answers

Answered by ihrishi
0

Answer:

 \frac{1 - i}{cos \frac{ \pi}{3}  + i \: sin \frac{ \pi}{3} }  \\  =  \frac{1 - i}{cos  \: 60 \degree  + i \: sin 60 \degree } \\  =  \frac{1 - i}{ \frac{1}{2}  -  \frac{ \sqrt{3} }{2} }  \\  =  \frac{1 - i}{ \frac{1 -  \sqrt{3} }{2}   }  =  \frac{2(1 - i)}{1 -  \sqrt{3} }      \\ =  \frac{2(1 - i)}{1 -  \sqrt{3} } \times  \frac{(1 +  \sqrt{3} )}{(1 +  \sqrt{3} )}  \\   =  \frac{2(1 - i) \times(1 +  \sqrt{3} ) }{(1 -  \sqrt{3})  \times (1 +  \sqrt{3} )} \\  =  2 \times \frac{1(1 +  \sqrt{3}) - i(1 +  \sqrt{3}) }{ {1}^{2}  -  {( \sqrt{3}) }^{2} } \\  =  2 \times \frac{1 +  \sqrt{3} - i  - i  \sqrt{3} }{ 1 -  3} \\  =  2 \times \frac{1 +  \sqrt{3} - i  - i  \sqrt{3} }{ - 2}  \\ =   \frac{1 +  \sqrt{3} - i  - i  \sqrt{3} }{ - 1}  \\ =   - (1 +  \sqrt{3}  - i - i \sqrt{3} ) \\  =  - (1 +  \sqrt{3} ) + i(1 +  \sqrt{3} )

Answered by jenymanoj2017
0

Answer:

Step-by-step explanation:

This can be summarized as follows: The polar form of a complex number z=a+bi is z=r(cosθ+isinθ) , where r=|z|=√a2+b2 , a=rcosθ and b=rsinθ , and θ=tan−1(ba) for a>0 and θ=tan−1(ba)+π or θ=tan−1(ba)+180° for a<0 . Example: Express the complex number in polar form.

Similar questions