Math, asked by Sai10110, 1 year ago

express log2^3 -log64+1/2log16 as a single logarithm

Answers

Answered by Anonymous
11
log 8 - log 8^2 + log √16
log 8 - 2 log 8 + log 4
- log8 + log 4

log 4/8

log 1/2
- log2
Answered by tardymanchester
5

Answer:

log2^3-log64+\frac{1}{2}log16=log\frac{1}{2}=-log2

Step-by-step explanation:

Given :  log2^3-log64+\frac{1}{2}log16

To Express: In single logarithm

Solution : log2^3-log64+\frac{1}{2}log16

=log8-log8^2+log\sqrt{16}  

=log8-2log8+log4  

=-log8+log4\rightarrow log4-log8

Logarithm property  logA-logB=log\frac{A}{B}

log4-log8=log\frac{4}{8}=log\frac{1}{2}=log2^{-1}=-log2

Therefore,  log2^3-log64+\frac{1}{2}log16=log\frac{1}{2}=-log2





Similar questions