Math, asked by nandusindu2003, 1 month ago

Express matrix A = [1 2 2-1] as the sum of a symmetric and skew-symmetric matrix.​

Answers

Answered by sabarishskvv
1

Answer:

Let A=[

3

1

5

−1

], then A

=[

3

5

1

−1

]

Now, A+A

=[

3

1

5

−1

]+[

3

5

1

−1

]=[

6

6

6

−2

]

Let P=

2

1

(A+A

)=

2

1

[

6

6

6

−2

]=[

3

3

3

−1

]

Now, P

=[

3

3

3

−1

]=P

Thus, P=

2

1

(A+A

) is a symmetric matrix.

Now, A−A

=[

3

1

5

−1

]−[

3

5

1

−1

]=[

0

−4

4

0

]

Let Q=

2

1

(A−A

)=

2

1

[

0

−4

4

0

]=[

0

−2

2

0

]

Now, Q

=[

0

−2

2

0

]=Q

Thus, Q=

2

1

(A−A

) is a skew-symmetric matrix.

Representing A as sum of P and Q:

P+Q=[

3

3

3

−1

]+[

0

−2

2

0

]=[

3

1

5

−1

]=A

(ii) Let =

6

−2

2

−2

3

−1

2

−1

3

, then A

=

6

−2

2

−2

3

−1

2

−1

3

Now, A+A

=

6

−2

2

−2

3

−1

2

−1

3

+

6

−2

2

−2

3

−1

2

−1

3

=

12

−4

4

−4

6

−2

4

−2

6

Let P=

2

1

(A+A

)=

2

1

12

−4

4

−4

6

−2

4

−2

6

=

6

−2

2

−2

3

−1

2

−1

3

Now, P

=

6

−2

2

−2

3

−1

2

−1

3

=P

Thus, P=

2

1

(A+A

) is a symmetric matrix.

Now, A−A

=

6

−2

2

−2

3

−1

2

−1

3

6

−2

2

−2

3

−1

2

−1

3

=

0

0

0

0

0

0

0

0

0

Let Q=

2

1

(A−A

)=

0

0

0

0

0

0

0

0

0

Now, Q

=

0

0

0

0

0

0

0

0

0

=−Q

Thus, Q=

2

1

(A−A

) is a skew-symmetric matrix.

Representing A as sum of P and Q:

P+Q=

6

−2

2

−2

3

−1

2

−1

3

+

0

0

0

0

0

0

0

0

0

=

6

−2

2

−2

3

−1

2

−1

3

=A

(iii) Let A=

3

−2

−4

3

−2

−5

−1

1

2

, then A

=

3

3

−1

−2

−2

1

−4

−5

2

Now, A+A

=

3

−2

−4

3

−2

−5

−1

1

2

+

3

3

−1

−2

−2

1

−4

−5

2

=

6

1

−5

1

−4

−4

−5

−4

4

Let P=

2

1

(A+A

)=

2

1

6

1

−5

1

−4

−4

−5

−4

4

=

3

2

1

2

5

2

1

−2

−2

2

5

−2

2

Now, P

=

3

2

1

2

5

2

1

−2

−2

2

5

−2

2

=P

Thus, P=

2

1

(A+A

) is a symmetric matrix.

Similar questions