Math, asked by sakethbingiwar, 1 year ago

express sec theta in all trigonometric ratios

Answers

Answered by shristidixit
1
I hope this will help you
Attachments:
Answered by MayankTamakuwala1296
2
Result 1
 \sec(x)  =  \frac{1}{ \cos(x) }

Now,As we know that
Result 2
 \sec^{2} (x)  -  \tan^{2} (x)  = 1

 \sec(x)  =  \sqrt{1 -  \tan^{2} (x) }

Now, Result 3

 \sec(x)  =  \frac{1}{ \cos(x) }

and as we know that

 \sin^{2} (x )  +  \cos^{2} (x)   = 1

So

 \sec(x)  =  \frac{1}{ \sqrt{1 -  \sin^{2} (x) } }

Now, Result 4

as we know that

 \sin(x)  =  \frac{1}{ \cosec(x) }
so, In result 3

 \sec(x)  =  \frac{1}{ \sqrt{1 -  \sin^{2} (x) } }

 \sec(x)  =  \frac{1}{ \sqrt{1 -  \frac{1}{ \cosec^{2} ( {x} ) } } }

 \sec(x)  =  \frac{1}{ \sqrt{   \frac{ \cosec^{2} (x)  - 1}{  \cosec^{2} ( {x} ) } } }

 \sec(x)  =  \frac{ \sqrt{ \cosec ^{2} (x) } }{ \sqrt{  { \cosec^{2} (x)  - 1} } }

 \sec(x)  =  \frac{ { \cosec (x) } }{ \sqrt{  { \cosec^{2} (x)  - 1} } }
Now, Result 5 from result 2

 \sec(x)  =  \sqrt{1 -  \tan^{2} (x) }

 \sec(x)  =  \sqrt{1 -   \frac{1}{\cot^{2} (x) } }

 \sec(x)  = \sqrt{ \frac{ \cot^{2} (x)  - 1}{ \cot^{2} (x ) } }

 \sec(x)  =  \frac{ \sqrt{ \cot^{2} (x)  - 1} }{ \cot(x) }
Done.
Similar questions