Math, asked by tejumoon9386, 1 year ago

Express sin 5x-sin 6x as a product of trigonometric function.​

Answers

Answered by karamvirsingh7p7bwae
3

Answer:

ur ans

Step-by-step explanation:

Attachments:
Answered by saltywhitehorse
3

Answer:

\sin5x-\sin6x=-2\times\cos[\frac{11x}{2}]\times\sin[\frac{(x)}{2}]

Step-by-step explanation:

Use the trigonometric identity

\sin A \sin B = 2\times\cos[\frac{(A-B)}{2}]\times\sin[\frac{(A+B)}{2}]

and

-\sin A=\sin(-A)

therefore,

\sin5x-\sin6x\\\\=\sin5x+\sin(-6x)\\\\=2\times\cos[\frac{(5x-(-6x))}{2}]\times\sin[\frac{(5x+(-6x))}{2}]\\\\=2\times\cos[\frac{(5x+6x)}{2}]\times\sin[\frac{(5x-6x)}{2}]\\\\=2\times\cos[\frac{11x}{2}]\times\sin[\frac{(-x)}{2}]\\\\=-2\times\cos[\frac{11x}{2}]\times\sin[\frac{(x)}{2}]

Similar questions