Math, asked by abc004, 6 months ago

Express sin 85° + cosec 85° in terms of trigonometric ratios of angles between
0° and 45
cos 5° + sec 5°
2cos 5° + sec 5°
cos 85° + sec 85°
cos 5-sec 5°​

Answers

Answered by himani4370
4

Answer:

cos 5+ sec 5

Step-by-step explanation:

sin 85= sin (90-5)= cos 5

cosec 85= cosec (90-5) = sec 5

therefore sin85+cosec 85= cos 5+ sec 5

Answered by Anonymous
72

We have,

We have,cot(90 0

We have,cot(90 0 −θ)=tanθ and cos(90 0

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0 =cos(90 0 −15 0 )=sin15 0∴cot85 0

We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0 =cos(90 0 −15 0 )=sin15 0∴cot85 0 +cos75 0 =tan5 0 +sin15 0

Similar questions