Express sin 85° + cosec 85° in terms of trigonometric ratios of angles between
0° and 45
cos 5° + sec 5°
2cos 5° + sec 5°
cos 85° + sec 85°
cos 5-sec 5°
Answers
Answer:
cos 5+ sec 5
Step-by-step explanation:
sin 85= sin (90-5)= cos 5
cosec 85= cosec (90-5) = sec 5
therefore sin85+cosec 85= cos 5+ sec 5
We have,
We have,cot(90 0
We have,cot(90 0 −θ)=tanθ and cos(90 0
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0 =cos(90 0 −15 0 )=sin15 0∴cot85 0
We have,cot(90 0 −θ)=tanθ and cos(90 0 −θ)=sinθcot85 0 =cot(90 0 −5 0 )=tan5 0cos75 0 =cos(90 0 −15 0 )=sin15 0∴cot85 0 +cos75 0 =tan5 0 +sin15 0