Math, asked by qqq111, 1 year ago

express sin a in terms of cot a

Answers

Answered by MG00SGGK
1

Answer:

sina=√1-cos^2a

Step-by-step explanation:

square sina

sin^2a=1-cos^2a

=> sina=√1-cos^2a

pls mark brainliest

Answered by Mister36O
1

Answer :

\quad  \cdot\dashrightarrow\bf \:  \: {sin A = \cfrac{1}{\sqrt{1+cot^2 A}}}

Step-by-step Explanation :

To Express :

  • Sin A in terms of Cot A.

Formula Used :

  • 1 + cot² A = cosec² A.

\quad\cdot\dashrightarrow\tt \:  \:sin {}^{2}  A = \cfrac{1}{cosec{}^{2}A  }

Expressing :

\quad\cdot\dashrightarrow\tt \:  \:sin {}^{2}  A = \cfrac{1}{cosec{}^{2}A  }

\quad\cdot\dashrightarrow\tt \:  \:sin {}^{ \cancel2}  A = \cfrac{1}{cosec{}^{ \cancel2}A  }

  • ➥ Here, squares are cancelled.

\quad  \cdot\dashrightarrow\bf \:  \: {sin A = \cfrac{1}{\sqrt{1+cot^2 A}}}

  • ➥ Here, we have substituted the value of cosec A and rooted it .
Similar questions