Math, asked by 012345, 1 year ago

express sin theta in terms of cot theta

Answers

Answered by TPS
109
cot \theta= \frac{cos \theta}{sin \theta} \\ \\ squaring\ both\ sides\\ \\cot^2 \theta= \frac{cos^2 \theta}{sin^2 \theta}= \frac{1-sin^2 \theta}{sin^2 \theta}= \frac{1}{sin^2 \theta}-\frac{sin^2 \theta}{sin^2 \theta}\\ \\ \Rightarrow cot^2 \theta=\frac{1}{sin^2 \theta}-1\\ \\ \Rightarrow cot^2 \theta+1=\frac{1}{sin^2 \theta}\\ \\ \Rightarrow sin^2 \theta= \frac{1}{cot^2 \theta+1} \\ \\ \Rightarrow sin \theta= \frac{1}{\sqrt{cot^2 \theta+1}}

sin \theta\ will\ be\ positive\ since\ \theta\ is\ acute.
Answered by eshita2293
6

Answer:

sin theta =√ 1/cos²theta + 1

Similar questions