Math, asked by ad2650321, 6 months ago

Express sin75⁰+cos55⁰ in the terms of angles between 0⁰ and 45⁰​

Answers

Answered by Anonymous
1

\huge\red{\boxed{\red{\mathcal{\overbrace{\underbrace{\fcolorbox{Red}{aqua}{\underline{\red{✯Answer✯}}}}}}}}}

</p><p>cos 15^{\circ}+sin 35^{\circ}cos15∘+sin35∘ \\ </p><p></p><p>Step-by-step  \: explanation: \\ </p><p></p><p>We \:  are \:  given \:  that \\ </p><p></p><p>sin 75^{\circ}+cos55^{\circ}sin75∘+cos55∘ \\ </p><p></p><p>We  \: have  \: to  \: express  \: given \:  \\  expression  \: in \:  terms  \: of \:  the \:  angles \:  \\  between \:  0^{\circ}0∘  \: and \:  45 \:  degrees. \\ </p><p></p><p>sin (90-15)^{\circ}+cos (90-35)^{\circ}sin(90−15)∘+cos(90−35)∘ \\ </p><p></p><p>We  \: know \:  that \\ </p><p></p><p>sin (90-\theta)=cos\theta, cos (90-\theta)=sin\thetasin(90−θ)=cosθ,cos(90−θ)=sinθ \\ </p><p></p><p>Apply  \: the  \: formula \:  then, \:  we \:  get \\ </p><p></p><p>cos 15^{\circ}+sin 35^{\circ}cos15∘+sin35∘</p><p></p><p>

Similar questions