express sinA ,cosA, cosecA, and sec A in terms of cot A.
Answers
Answered by
22
using the identity cosec^2A-cot^2A=1
we get cosec^2A=1+cot^2a
1/sin^2A=1+cot^2A
sin^2A=1/1+cot^2A
sinA=(1/1+cot^2A)^1/2
using identity sec^2A-tan^2A=1
we get
sec^2A=1+tan^2A
sec^2A=1+1/cot^2A
sec^2A=cot^2A+1/cot^2A
secA=(cot^2A+1/cot^2A)^1/2 .
we get cosec^2A=1+cot^2a
1/sin^2A=1+cot^2A
sin^2A=1/1+cot^2A
sinA=(1/1+cot^2A)^1/2
using identity sec^2A-tan^2A=1
we get
sec^2A=1+tan^2A
sec^2A=1+1/cot^2A
sec^2A=cot^2A+1/cot^2A
secA=(cot^2A+1/cot^2A)^1/2 .
Answered by
8
sec^2A=1+tan^2A
sec^2A=1+1/cot^2A
sec^2A=cot^2A+1/cot^2A
secA=(cot^2A+1/cot^2A)^1/2
sec^2A=1+1/cot^2A
sec^2A=cot^2A+1/cot^2A
secA=(cot^2A+1/cot^2A)^1/2
darshithaiconic:
Sin theta/cos theta =tan theta,1-sec square theta = tan theta
Similar questions