Express tan^-1 (cosx/1-sinx
the simplest form
II < x < Il in
Answers
Given : Tan⁻¹ ( Cosx / (1 - Sinx) )
To find : Simplest form
Solution:
Tan⁻¹ ( Cosx / (1 - Sinx) )
Using Cos2θ = Cos²θ - Sin²θ
& Sin2θ = 2SinθCosθ
Cos²θ + Sin²θ = 1
= Tan⁻¹ ( (Cos²(x/2) - Sin²(x/2)) / (Cos²(x/2) +Sin²(x/2) - 2Sin(x/2)Cos(x/2) ) )
using a² - b² = (a + b)(a - b)
& a² + b² - 2ab = (a - b)²
= Tan⁻¹ ( (Cos(x/2)+ Sin(x/2)(Cos(x/2) - Sin(x/2) / (Cos(x/2) -Sin(x/2))² )
= Tan⁻¹ ( (Cos(x/2)+ Sin(x/2) / (Cos(x/2) -Sin(x/2) ) )
Dividing numerator & denominator by Cos(x/2)
= Tan⁻¹ ( (1+ Tan(x/2) / (1 -Tan(x/2) ) )
= Tan⁻¹ (Tan (π/4 + x/2) )
= π/4 + x/2
Tan⁻¹ ( Cosx / (1 - Sinx) ) = π/4 + x/2
Learn More:
1+x - √ 1-x tan⁻¹ [————————— ]= π/4 - ½ cos⁻¹ x, - Brainly.in
https://brainly.in/question/16556563
tan⁻¹ 15 +tan⁻¹ 17 +tan⁻¹ 13 + tan⁻¹ 18 = π4 सिद्ध कीजिए
https://brainly.in/question/16556304
tan⁻¹ 6316 = sin⁻¹ 513 +cos⁻¹ 35 सिद्ध कीजिए - Brainly.in
https://brainly.in/question/16556296