Math, asked by ishwarineupane777, 1 month ago

express tanA in terms of sin2A and cos2A​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

We know that,

\purple{ \boxed{ \bf{sin2x = 2sinxcosx}}}

and

\purple{ \boxed{ \bf{cos2x =1 - 2 {sin}^{2}x }}}

Now, Consider

\rm :\longmapsto\:tanA

\rm \:  =  \: \dfrac{sinA}{cosA}

On multiply and divide by 2 sinA, we get

\rm \:  =  \: \dfrac{ {2sin}^{2} A}{2sinA \: cosA}

\rm \:  =  \: \dfrac{1 - cos2A}{sin2A}

Hence,

   \:  \:  \:  \:  \: \:  \:  \:  \:  \: \purple{ \underbrace{ \boxed{ \bf\ \: \:  \:  \:   \: tanA = \dfrac{1 - cos2A}{sin2A} \:  \:  \:  \:  \:  \:  \:  }}}

Additional Information :-

Let's solve the same type of problem!!!!

Question :- Express cotA in terms of sin2A and cos2A.

Solution :-

\rm :\longmapsto\:cotA

\rm \:  =  \: \dfrac{cosA}{sinA}

On multiply and divide by cosA, we get

\rm \:  =  \: \dfrac{ {2cos}^{2} A}{2sinA \: cosA}

\rm \:  =  \: \dfrac{1 + cos2A}{sin2A}

Hence,

   \:  \:  \:  \:  \: \:  \:  \:  \:  \: \purple{ \underbrace{ \boxed{ \bf\ \: \:  \:  \:   \: cotA = \dfrac{1 + cos2A}{sin2A} \:  \:  \:  \:  \:  \:  \:  }}}

Know more about Formula's

\purple{ \boxed{ \bf{sin2x = 2sinxcosx =  \frac{2tanx}{1 +  {tan}^{2}x}}}}

\purple{ \boxed{ \bf{cos2x =  {cos}^{2}x -  {sin}^{2}x = 1 -  {2sin}^{2}x =  {2cos}^{2}x - 1}}}

\purple{ \boxed{ \bf{cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}}}}

\purple{ \boxed{ \bf{tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}}

\purple{ \boxed{ \bf{1 - cos2x =  {2sin}^{2}x}}}

\purple{ \boxed{ \bf{1  +  cos2x =  {2cos}^{2}x}}}

Similar questions