Math, asked by shaileshp09898, 1 year ago

express the complex number 3 vroot 2 (-1+i) into polar form​

Answers

Answered by skh2
6

3 \sqrt{2}( - 1 + i) \\  \\  =  - 3 \sqrt{2}  + 3 \sqrt{2}i

Now we know that polar form of complex number is :-

r( \cos(a) + i \sin(a))

Now,

on comparing we get :-

r \cos(a) =  - 3 \sqrt{2} \\  \\  {r}^{2} { \cos}^{2}a = 18 \\  \\  \\ r \sin(a) = 3 \sqrt{2} \\  \\ {r}^{2} { \sin}^{2}a = 18 \\  \\  \\ {r}^{2}( { \sin(a) }^{2} +  { \cos(a) }^{2}) = 18 + 18 = 36 \\  \\  \\r =  \sqrt{36} = 6

Now we also know that:-

 \tan(a) =  \frac{y}{x} \\  \\  \\ \tan(a) =  \frac{3 \sqrt{2} }{ - 3\sqrt{2}} = \frac{1}{ - 1} \\  \\

It means it lies in 2nd Quadrant

so,

 \tan(a) =  -  \tan( \frac{\pi}{4}) \\  \\ \tan(a) =  \tan( \frac{3\pi}{4} ) \\  \\  \\a =  \frac{3\pi}{4}

so,

Polar form of the complex Number is :-

6( \cos( \frac{3\pi}{4} + i \sin( \frac{3\pi}{4})))

Answered by sandhyamalladi121
2

\begin{gathered}3 \sqrt{2}( - 1 + i) \\ \\ = - 3 \sqrt{2} + 3 \sqrt{2}i\end{gathered} </p><p>

Now we know that polar form of complex number is :-

r( \cos(a) + i \sin(a))

Now,

on comparing we get :-

 \begin{gathered}r \cos(a) = - 3 \sqrt{2} \\ \\ {r}^{2} { \cos}^{2}a = 18 \\ \\ \\ r \sin(a) = 3 \sqrt{2} \\ \\ {r}^{2} { \sin}^{2}a = 18 \\ \\ \\ {r}^{2}( { \sin(a) }^{2} + { \cos(a) }^{2}) = 18 + 18 = 36 \\ \\ \\r = \sqrt{36} = 6\end{gathered}

Now we also know that:-

\begin{gathered}\tan(a) = \frac{y}{x} \\ \\ \\ \tan(a) = \frac{3 \sqrt{2} }{ - 3\sqrt{2}} = \frac{1}{ - 1} \\ \\\end{gathered}

It means it lies in 2nd Quadrant

so,

\begin{gathered}\tan(a) = - \tan( \frac{\pi}{4}) \\ \\ \tan(a) = \tan( \frac{3\pi}{4} ) \\ \\ \\a = \frac{3\pi}{4}\end{gathered}

so,

Polar form of the complex Number is :-

6( \cos( \frac{3\pi}{4} + i \sin( \frac{3\pi}{4})))

Similar questions