Math, asked by Nadia786, 1 month ago

Express the complex number in the standard form a + bi.
2i^7+6i^9+7i^18-3i^16+4i^24

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{2\,i^7+6\,i^9+7\,i^{18}-3\,i^{16}+4\,i^{24}}

\underline{\textbf{To express:}}

\textsf{The given expression into a+ib form}

\underline{\textbf{Solution:}}

\underline{\textsf{Concept used:}}

\mathsf{*\;i=\sqrt{-1}}

\mathsf{*\;i^2=-1}

\mathsf{*\;i^3=-i}

\mathsf{*\;i^4=1}

\mathsf{*\;i^{4n}=1}

\mathsf{Consider,}

\mathsf{2\,i^7+6\,i^9+7\,i^{18}-3\,i^{16}+4\,i^{24}}

\mathsf{=2\,(i^4i^3)+6\,(i^8i^1)+7\,i^{16}i^2-3\,i^{16}+4\,i^{24}}

\mathsf{=2\,(1{\times}(-i))+6\,(1{\times}i)+7(1{\times}(-1))-3(1)+4(1)}

\mathsf{=-2i+6i-7-3+4}

\mathsf{=-6+4\,i}

\underline{\textbf{Find more:}}

Write (a+ib/a-ib)^2-(a-ib/a+ib)^2 in the form x +iy please reply me this

https://brainly.in/question/18153048

Similar questions