Express the complex number in the standard form a + bi.
2i^7+6i^7+7i^18-3i^16+4i^24
Answers
Answer:
The required expression of the given complex number is - 6 - 8i.
Step-by-step-explanation:
We have given a complex number.
We have to express it in the standard form a + bi.
The given complex number is 2i⁷ + 6i⁷ + 7i¹⁸ - 3i¹⁶ + 4i²⁴.
For a complex number a + bi, i is an imaginary number such that i² = - 1.
We know that,
i² = - 1
i³ = i² * i = - 1 * i = - i
i⁴ = ( i² )² = ( - 1 )² = 1
Now,
2i⁷ + 6i⁷ + 7i¹⁸ - 3i¹⁶ + 4i²⁴
⇒ 2 ( i⁴ * i³ ) + 6 ( i⁴ * i³ ) + 7 ( i¹⁶ * i² ) - 3i⁽ ⁴ * ⁴ ⁾ + 4i⁽ ⁴ * ⁶ ⁾ - - - [ aᵐ ⁺ ⁿ = aᵐ * aⁿ ]
⇒ 2 * 1 * ( - i ) + 6 * 1 * ( - i ) + 7i⁽ ⁴ * ⁴ ⁾ * ( - 1 ) - 3 ( i⁴ )⁴ + 4 ( i⁴ )⁶
⇒ ( - 2i ) + ( - 6i ) + 7 ( i⁴ )⁴ * ( - 1 ) - 3 * ( 1 )⁴ + 4 * ( 1 )⁶
⇒ - 2i - 6i + 7 * ( 1 )⁴ * ( - 1 ) - 3 * 1 + 4 * 1
⇒ - 8i + 7 * 1 * ( - 1 ) - 3 + 4
⇒ - 8i - 7 + 1
⇒ - 8i - 6
⇒ - 6 - 8i
∴ The required expression of the given complex number is - 6 - 8i.