Math, asked by chikkuzuha9, 4 months ago

Express the complex number z= 5+I/2+3i in a+ib

Answers

Answered by Anonymous
3

\textsf{The a+ib form of the given complex number is 1 - i}

Step-by-step explanation:

Given:

\mathsf{z=\frac{5+i}{2+3i}}z\textsf{Multily both numerator and denominator by 2-3i}

\mathsf{z=\frac{5+i}{2+3i}{\times}\frac{2-3i}{2-3i}}z

\mathsf{z=\frac{(5+i)(2-3i)}{2^2-3^2i^2}}z

\mathsf{z=\frac{10-15i+2i-3i^2}{4-9i^2}}z

\textsf{Using,}\boxed{i^2=-1}

\mathsf{z=\frac{10-13i-3(-1)}{4-9(-1)}}z

\mathsf{z=\frac{13-13i}{13}}z

\implies\mathsf{\bf\;z=1-i}

Similar questions