Math, asked by joginder919, 1 year ago

Express the complex number z = 5+i/2+3i in the form a + ib

Answers

Answered by MaheswariS
52

Answer:

\textsf{The a+ib form of the given complex number is 1 - i}

Step-by-step explanation:

\textsf{Given:}

\mathsf{z=\frac{5+i}{2+3i}}

\textsf{Multily both numerator and denominator by 2-3i}

\mathsf{z=\frac{5+i}{2+3i}{\times}\frac{2-3i}{2-3i}}

\mathsf{z=\frac{(5+i)(2-3i)}{2^2-3^2i^2}}

\mathsf{z=\frac{10-15i+2i-3i^2}{4-9i^2}}

\textsf{Using,}\boxed{i^2=-1}

\mathsf{z=\frac{10-13i-3(-1)}{4-9(-1)}}

\mathsf{z=\frac{13-13i}{13}}

\implies\mathsf{\bf\;z=1-i}

Answered by milanbinil11
7

LOOK AT THE PICTURE⬆️⬆️⬆️

.

.

THIS IS THE ANSWER

.

.

.

.

.

.

Attachments:
Similar questions