Math, asked by safna47, 1 year ago

express the complex number z=8/1+i root3 in a+ib form
8 \div 1 + i \sqrt{3 \: in \: a + ib \: form}

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{z=\dfrac{8}{1+i\sqrt3}}

\underline{\textbf{To find:}}

\mathsf{a+i\,b\;form\;of\;z=\dfrac{8}{1+i\sqrt3}}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{z=\dfrac{8}{1+i\sqrt3}}

\textsf{Multiply both numerator and denominator by}

\mathsf{conjugate\;of\;1+i\sqrt3}

\mathsf{z=\dfrac{8}{1+i\sqrt3}{\times}\dfrac{1-i\sqrt3}{1-i\sqrt3}}

\mathsf{z=\dfrac{8(1-i\sqrt3)}{(1+i\sqrt3)(1-i\sqrt3)}}

\textsf{Using the identity,}\;\;\boxed{\bf\,(a+b)(a-b)=a^2-b^2}

\mathsf{z=\dfrac{8(1-i\sqrt3)}{1^2-i^2(\sqrt3)^2}}

\mathsf{z=\dfrac{8(1-i\sqrt3)}{1+3}}

\mathsf{z=\dfrac{8(1-i\sqrt3)}{4}}

\mathsf{z=2(1-i\sqrt3)}

\boxed{\bf\,z=2-i\,2\sqrt3}

\textsf{which is of the form a+ib}

Answered by parulsehgal06
0

Answer:

The a+ib form of  z=\frac{8}{1+i\sqrt{3} }  is  z=2-i2\sqrt{3}

Step-by-step explanation:

Rationalize:

  • Given complex number is

        z=\frac{8}{1+i\sqrt{3} }

  • Rationalize the above number

          Multiply and divide the number with {1-i\sqrt{3} }

                  z=\frac{8}{1+i\sqrt{3} }(\frac{1-i\sqrt{3} }{1-i\sqrt{3} })

                     =\frac{8(1-i\sqrt{3}) }{1+3}

                     =2(1-i\sqrt{3})

                  z=2-i2\sqrt{3}

        Hence, a+ib form z=\frac{8}{1+i\sqrt{3} }  is  z=2-i2\sqrt{3}  

To know more about Complex numbers:

https://brainly.in/question/30799201?referrer=searchResults

Similar questions