Math, asked by siddharthjagtap42, 8 months ago

Express the equations in terms of x and y if x cos theta + y sin theta = a;
x sin theta - ycos theta = b​

Answers

Answered by Anonymous
2

\red\bigstar EXPLAINATION \red\bigstar

a = xcos\theta + ysin\theta

b = xsin\theta - ycos\theta

a^2 = (xcos\theta + ysin\theta)^2 = x^2cos^2\theta + y^2sin^2\theta + 2xysin\theta\cos\theta

b^2 = (xsin\theta - ycos\theta)^2 = x^2sin^2\theta + y^2cos^2\theta - 2xysin\theta cos\theta

a^2 + b^2 = x^2cos^2\theta +y^2sin^2\theta + 2xysin\theta cos\theta + x^2sin^2\theta + y^2cos\theta - 2xysin\theta cos\theta

"2xysin\theta cos\theta"\: "-2xysin\theta cos\theta"\: got\: cancelled

a^2 + b^2 = x^2(cos^2\theta + sin^2\theta) + y^2(sin^2\theta + cos^2\theta)

We\: know\: that\: sin^2\theta + cos^2\theta = 1

Therefore,

a^2 + b^2 = x^2 + y^2

\red\star EXTRA INFORMATION \red\star

i)sin\theta = \frac{Perpendicular}{Hypotenuse}

ii)cos\theta = \frac{Base}{Hypotenuse}

iii)tan\theta = \frac{Perpendicular}{Base}

iv)cot\theta = \frac{Base}{Perpendicular}

v)sec\theta = \frac{Hypotenuse}{Base}

vi)cosec\theta = \frac{Hypotenuse}{Perpendicular}

vii)sin\theta = \frac{1}{cosec\theta}

viii)cos\theta = \frac{1}{sec\theta}

ix)tan\theta = \frac{1}{cot\theta}

x)sin^2\theta + cos^2\theta = 1

xi)1 + tan^2\theta = sec^2\theta

xii)1 + cot^2\theta = cosec^2\theta

Similar questions