Math, asked by Gemsroy9013, 8 months ago

Express the first quantity as a percentage of the second quantity 1 year, 4 month

Answers

Answered by Anonymous
35

UR QUESTON:-

an iron pillar consisted of a cylindrical portion of 2.8 m height and 20 cm in diameter and a cone of 42 cm. Find the weight of the pillar if 1 cm³ of iron weights 7.5 g

UR ANSWER✓

\Large\bold\purple{given,}

.Height \:of \:cylindrical \:portion \:= 2.8 m

Diameter\: of \:cylindrical \:portion \:= 20 cm

Height \:of \:the\: cone\: = 42 cm

\Large\underline\bold{TO\:FIND,}

 \sf\large\dashrightarrow  \:weight\:of\:pillar

\Large\underline\bold{SOLUTION,}

 \sf\implies \:volume\:of\:pillar=volume\:of\:cone+\:volume\:of\:cylinder

\Large\underline\bold{for\:cylinder:-}

 radius= \dfrac{diameter}{2}

 \sf\implies \frac{20}{2}

 \sf\implies 10cm

 \sf\therefore height\:=2.8m

converstion m into centimeter

 \sf\implies 2.8 m \times 100

 \sf\implies height=280cm

.  Volume = \pi r^2h

\sf\implies \dfrac{22}{7}  \times 10 \times 10 \times 280

\sf\implies \dfrac{22}{7}  \times 28000

\sf\implies \dfrac{616000}{7}

\sf\implies \cancel \dfrac{616000}{7}

 \sf\implies 88000cm^3

\large{\boxed{\sf{ 88000cm^3}}}

\Large\underline\bold{for\:cone:-}

\sf Radius = \frac{diameter}{2}

 \sf\implies \frac{20}{2}

 \sf\implies 10 cm

 \sf\therefore height=42cm

\sf\therefore Volume = \dfrac{1}{3} \pi r^2h

 \sf\implies dfrac{1}{3} \times \dfrac{22}{7} \times 10 \times 10 \times 42

 \sf\implies dfrac{1}{3} \times \dfrac{22}{7} \times 100 \times 42

 \sf\implies dfrac{1}{3} \times \dfrac{22}{7} \times 4200

 \sf\implies \dfrac{22}{21} \times 4200

 \sf\implies \dfrac{92400}{21}

 \sf\implies \cancel \dfrac{92400}{21}

\large{\boxed{\sf{{4400m^3}}}

\Large\underline\bold{now,}

 \sf\therefore volume\:of\:cylinder= 88000cm^3

 \sf\therefore volume\:of\:cone= 4400cm^3

 \sf\implies \:volume\:of\:pillar=volume\:of\:cone+\:volume\:of\:cylinder

 \sf\implies \:volume\:of\:pillar=88000+4400

 \sf\implies 92400cm^3

\large{\boxed{\sf{92400cm^3}}}

Total weight of pillar at a weight of 7.5 g per 1cm³

= 92400 × 7.5

\sf {\fbox {answer\:=\:693000gms}}

\sf\implies conversion

= \sf \implies \dfrac{693000}{1000}kg

 \sf\implies \cancel \frac{693000}{1000}kg

\sf {\fbox {answer\:=\:693kg }}

__________________

ADDITIONAL INFORMATION,

\Large\underline\bold{1)diagram\:of\:cylinder}

\Large\underline\bold{2)diagram\:of\: cone}

\begin{lgathered}\setlength{\unitlength}{0.99cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){2.8}}\put(3.2,4){\sf{2.8cm}}\put(3,2){\line(0,2){4.5}}\put(1.5,1.7){\sf{10cm}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(1,4){\sf l}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}\\\end{lgathered}

Similar questions