Math, asked by Zainab5019, 23 days ago

Express the following as a sum of two trigonometric ratios. Sin5xCos3x

Answers

Answered by succesinfo21
1

Answer:

sinA+sinB=2sin((A+B)/2)cos((A-B)/2), so sin((A+B)/2)cos((A-B)/2)=1/2(sinA+sinB).

(1/2)(A+B)=5x and (1/2)(A-B)=3x, therefore, adding these two equations: A=8x and subtracting them: B=2x.

Therefore, (1/2)(sin8x+sin2x)=sin5xcos3x

Answered by amitnrw
1

Given : Sin5x . Cos3x

To Find : Express   as a sum of two trigonometric ratio

Solution:

Sin C + SinD  = 2 Sin (C + D)/2 Cos (C - D)/2

Sin (C + D)/2 Cos (C - D)/2 = Sin5x . Cos3x

 (C + D )/2 = 5x  

=> C + D = 10x

(C - D)/2 = 3x

=>  C - D  = 6x

Adding Both 2C = 16x  => C = 8x

D = 2x

Sin8x + sin 2x  = 2sin5xcos3x

=> sin5xcos3x = (1/2) ( sin8x  + sin2x)

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions