Math, asked by singhsimranjotsingh, 1 year ago

Express the following as the product of sines and cosines : sin 2x + cos 4x​

Answers

Answered by Swarup1998
1

Trigonometry

Given: sin2x + cos4x

To find: express the sum as the product of sines and cosines

Solution:

  • We know that, sin2A = 2 sinA cosA and cos2A = cos²A - sin²A

  • Now, sin2x + cos4x
  • = 2 sinx cosx + cos2(2x)
  • = 2 sinx cosx + cos²2x - sin²2x
  • = 2 sinx cosx + (cos²x - sin²x)² - (2 sinx cosx)²
  • = 2 sinx cosx + (cos²x + sin²x)² - 4 cos²x sin²x - 4 sin²x cos²x
  • = 2 sinx cosx + 1 - 8 sin²x cos²x
  • = 1 + 2 sinx cosx - 8 (sinx cosx)²
  • This is the required expression.

Answer:

sin2x + cos4x = 1 + 2 sinx cosx - 8 (sinx cosx)²

Similar questions