express the following complex number in the form r(cos theta + i sin theta):
(i) 1+i tan alpha
(ii) tan alpha - i
Answers
Polar form of Z
Case 1st
1+ i tan alpha
we know that r= |z|
First of all we have to find value of |z|
1+ tan²alpha = sec²alpha
Now we have to find arg(z)
As z lies in 1st quadrant so theta will
Arg(z) =
tan theta = tan alpha
theta = alpha
r = sec alpha
theta = alpha
Polar form of Z will
Z = r (cos theta + I sin theta)
Z = sec alpha ( cos alpha + I sin alpha)
Case 2nd
Here r = |z| = formula mentioned above
as we solved above..
Arg(z) =
As we know that cot theta = 1/tan theta
if alpha <90 then
As Z lies in 4th quadrant
So,
Z = sec alpha [ cos( π/2 +alpha) + I sin (π/2 +alpha)]
cos ( 90+ alpha ) =- sin alpha
Sin ( 90+alpha ) = cos alpha
So,
Z = sec alpha (- sin alpha + i cos alpha)
If alpha >90, then
as z lies in 4th quadrant
theta = -(π- π/2-alpha)
theta = - π/2-alpha
Polar form of Z will
Z = sec alpha [cos (π/2 - alpha) + i sin ( π/2- alpha)]
So ,
Z = sec alpha ( sin alpha + I cos alpha)
Hope it helps you
Step-by-step explanation:
Case 1st
1+ i tan alpha
we know that r= |z|
First of all we have to find value of |z|
|z| = \sqrt{re {(z)}^{2} + im {(z)}^{2} }∣z∣=
re(z)
2
+im(z)
2
|z| = \sqrt{ {(1)}^{2} + ( { \tan( \ \alpha ) }^{2}) }∣z∣=
(1)
2
+(tan( α)
2
)
1+ tan²alpha = sec²alpha
|z| = \sec( \alpha )∣z∣=sec(α)
Now we have to find arg(z)
As z lies in 1st quadrant so theta will
Arg(z) =
\tan( \theta ) = | \frac{im(z)}{re(z)} |tan(θ)=∣
re(z)
im(z)
∣
\tan( \theta) = | \frac{ \tan( \alpha ) }{1} |tan(θ)=∣
1
tan(α)
∣
tan theta = tan alpha
theta = alpha
r = sec alpha
theta = alpha
Polar form of Z will
Z = r (cos theta + I sin theta)
Z = sec alpha ( cos alpha + I sin alpha)
Case 2nd
\tan( \alpha ) - itan(α)−i
Here r = |z| = formula mentioned above
|z| = \sqrt{ \tan( { \alpha }^{2} ) + ( {1)}^{2} }∣z∣=
tan(α
2
)+(1)
2
as we solved above..
|z| = \sec( { \alpha })∣z∣=sec(α)
Arg(z) =
\tan( \theta) = | \frac{ - 1}{ \tan( \alpha ) } |tan(θ)=∣
tan(α)
−1
∣
\tan( \theta) = \frac{1}{ \tan( \alpha ) }tan(θ)=
tan(α)
1
\tan( \theta) = \cot( \alpha )tan(θ)=cot(α)
As we know that cot theta = 1/tan theta
if alpha <90 then
\tan( \theta) = \tan(90 - \alpha )tan(θ)=tan(90−α)
\theta = \frac{\pi}{2} - \alphaθ=
2
π
−α
As Z lies in 4th quadrant
\theta = - (\pi - \frac{\pi}{2} + \alpha )θ=−(π−
2
π
+α)
\theta = (\frac{\pi}{2} + \alpha )θ=(
2
π
+α)
So,
Z = sec alpha [ cos( π/2 +alpha) + I sin (π/2 +alpha)]
cos ( 90+ alpha ) =- sin alpha
Sin ( 90+alpha ) = cos alpha
So,
Z = sec alpha (- sin alpha + i cos alpha)
If alpha >90, then
\tan( \theta) = \tan(90 + \alpha )tan(θ)=tan(90+α)
(\theta) = \frac{\pi}{2} + \alpha(θ)=
2
π
+α
as z lies in 4th quadrant
theta = -(π- π/2-alpha)
theta = - π/2-alpha
Polar form of Z will
Z = sec alpha [cos (π/2 - alpha) + i sin ( π/2- alpha)]
\cos( \frac{\pi}{2} - \alpha ) = \sin( \alpha )cos(
2
π
−α)=sin(α)
\sin( \frac{\pi}{2} - \alpha ) = \cos( \alpha )sin(
2
π
−α)=cos(α)
So ,
Z = sec alpha ( sin alpha + I cos alpha)
Hope it helps you