Math, asked by devansh9257, 4 days ago

Express the following complex number on polar form : 1 + i​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given complex number is

\rm \: 1 + i \\

Let assume that

\rm \: 1 + i  = r(cos\theta  + i \: sin\theta ) -  -  - (1)\\

\rm \: 1 + i  = r \: cos\theta  + i \:r \:  sin\theta -  -  -\\

So, on comparing real and Imaginary parts, we get

\rm \: r \: cos\theta  = 1 -  -  -  - (2) \\

\rm \: r \: sin\theta  = 1 -  -  -  - (3) \\

On squaring equation (2) and (3) and add, we get

\rm \:  {r}^{2} {cos}^{2}\theta +  {r}^{2}  {sin}^{2}\theta    = 1 + 1 \\

\rm \:  {r}^{2}( {cos}^{2}\theta + {sin}^{2}\theta)    = 2 \\

\rm \:  {r}^{2}  = 2 \\

\rm\implies \:r \:  =  \:  \sqrt{2} -  -  -  - (4) \\

On substituting the value of r in equation (2) and (3), we get

\rm \: cos\theta  = \dfrac{1}{ \sqrt{2} }  \\

and

\rm \: sin\theta  = \dfrac{1}{ \sqrt{2} }  \\

\rm \: As \: cos\theta  \: and \: sin\theta  \: are \: both \: positive. \\

\rm\implies \:\theta  \: lies \: in \:  {1}^{st} \: quadrant. \\

\rm\implies \:\theta  = \dfrac{\pi}{4}  \\

So, required polar form is

\rm\implies \:\boxed{\sf{  \: \: \rm \: 1 + i =  \sqrt{2}\bigg(cos\dfrac{\pi}{4} + i \: sin \dfrac{\pi}{4} \bigg)  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Argument of complex number :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by talpadadilip417
0

Step-by-step explanation:

very simple and easy method...

 \leadsto \tt1+i=r(\cos \theta+i \sin \theta) \Rightarrow \quad r \cos \theta=1, r \sin \theta=1

 \text{\( \tt \Rightarrow \tan \theta=1,  \:  \:  \: \theta=\dfrac{\pi}{4} \) and \( \tt r=\sqrt{2}\) }

 \text{ \( \therefore \quad \) Polar form \( \red{ \tt =\sqrt{2}\left(\cos \dfrac{\pi}{4}+i \sin \dfrac{\pi}{4}\right) }\)}

Similar questions