Math, asked by deveshupadhyay277304, 7 hours ago

Express the following complex numbers in the standard form a +ib:

solve step by step
solve 2nd and 3rd , I will mark you as brainlist​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-ii}}

Given complex number is

\rm :\longmapsto\:\dfrac{3 + 2i}{ - 2 + i}

So, on rationalizing the denominator, we get

\rm \:  =  \: \dfrac{3 + 2i}{ - 2 + i} \times \dfrac{ - 2 - i}{ - 2 - i}

\rm \:  =  \: \dfrac{ - 6  -  3i - 4i  -  {2i}^{2} }{ {( - 2)}^{2}  -  {i}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {i}^{2} \:  =  \:  -  \: 1 \: }}} \\

So, using this, we get

\rm \:  =  \: \dfrac{ - 6 - 7i  - 2( - 1) }{ 4 - ( - 1)}

\rm \:  =  \: \dfrac{ - 6 - 7i  + 2}{ 4 + 1}

\rm \:  =  \: \dfrac{ - 4 - 7i }{5}

\rm \:  =  \:  - \dfrac{4}{5}  - \dfrac{7}{5} i

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\sf{Solution-iii}}

Given complex number is

\rm :\longmapsto\:\dfrac{1}{ {(2 + i)}^{2} }

\rm \:  =  \: \dfrac{1}{4 +  {i}^{2}  + 2 \times 2 \times i}

\rm \:  =  \: \dfrac{1}{4  - 1  + 4i}

\rm \:  =  \: \dfrac{1}{3+ 4i}

\rm \:  =  \: \dfrac{1}{3+ 4i} \times \dfrac{3 - 4i}{3 - 4i}

\rm \:  =  \: \dfrac{3 - 4i}{ {3}^{2} -  {(4i)}^{2} }

\rm \:  =  \: \dfrac{3 - 4i}{9 -16 {i}^{2} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {i}^{2} \:  =  \:  -  \: 1 \: }}} \\

So, using this, we get

\rm \:  =  \: \dfrac{3 - 4i}{9 -16( - 1)}

\rm \:  =  \: \dfrac{3 - 4i}{9 + 16}

\rm \:  =  \: \dfrac{3 - 4i}{25}

\rm \:  =  \: \dfrac{3}{25}  -  \dfrac{4}{25}i

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

 \purple{\rm :\longmapsto\:i \:  =  \:  \sqrt{ - 1}} \\

 \purple{\rm :\longmapsto\: {i}^{2} \:  =  \:   - 1} \\

 \purple{\rm :\longmapsto\: {i}^{3} \:  =  \:   - i} \\

 \purple{\rm :\longmapsto\: {i}^{4} \:  =  \: 1} \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
7

Question:-

Express the following complex numbers in the standard form of a + ib:

 \sf \large ii) \frac{3 + 2i}{ - 2 + i}  \\  \\  \sf \large iii) \frac{1}{(2 + i) {}^{2} }

Solution:-

 \sf \large ii) \frac{3 + 2i}{ - 2 + i}

Given:-

 \sf \large The \:  complex  \: number:  \frac{3 + 2i}{ - 2 + i} .

Multiplying and Dividing with 2 i.

 \sf \large⇒ a + ib =  \frac{3 + 2i}{ - 2 + i}  \times  \frac{ - 2 - i}{ - 2 - i}

 \sf \large⇒a + ib = \frac{3( - 2 - i) + 2i( - 2 - i)}{( - 2) {}^{2} - (i) {}^{2}  }

We know that, i ² = 1.

 \sf \large⇒a + ib =  \frac{ - 6 - 3i - 4i - 2i {}^{2} }{4 - i {}^{2} }

 \sf \large⇒a + ib =  \frac{ - 6 - 7i - 2( - 1)}{ 4 - ( - 1)}

 \sf \large⇒a + ib =  \frac{ - 4 - 7i}{5}

 \sf \large { \boxed{ \sf \large \red{ \therefore The \:  values \:  of  \: a,b  \: are  \:  - \frac{4}{5} , -  \frac{7i}{5} .}}}

_______________________________________

Solution:-

 \sf \large iii) \frac{1}{(2 + i) {}^{2} }

Given:-

 \sf \large The \:  complex  \: number:  \frac{1}{ (2 + i) {}^{2} } .

Now, let us simplify and Express in the standard form of ( a + ib ),

 \sf  \large  \frac{1}{2 + i) {}^{2} }  =  \frac{1}{(2 {}^{2}  + i {}^{2}  + 2(2)(i))}

 \sf \large =  \frac{1}{(4 - 1 + 4i)}

We know that, i ² = 1.

 \sf \large =  \frac{1}{(3 + 4i)}

[ By Multiplying and Dividing with (3 4i) ].

 \sf \large =  \frac{1}{(3 + 4i)}  \times  \frac{(3 - 4i)}{(3 - 4i)}

 \sf \large =  \frac{(3 - 4i)}{(3 {}^{2}  - (4i) {}^{2} )}

 \sf \large =  \frac{(3 - 4i)}{(9 - 16i {}^{2} )}

  \sf \large =  \frac{(3 - 4i)}{(9 - 16( - 1))}

 \sf \large =  \frac{(3 - 4i)}{25}

Answer:-

 \sf \large { \boxed{ \sf \large \red{ \therefore The \:  values \:  of  \: a,b  \: are  \:  \frac{3}{25} , -  \frac{4i}{25} .}}}

Hope you have satisfied.

Similar questions