Math, asked by desaishital, 1 year ago

Express the following in the form of a+ib,a,b€R,i=√-1 State the value of a and b,z=2+i|(3-i)(1+2i)​

Answers

Answered by hukam0685
15

Answer:

z =  \frac{2 + i}{(3 - i)(1 + 2i)}  =  \frac{3}{10}  - i \frac{1}{10}  \\  \\

Step-by-step explanation:

To express the following in the form of a+ib,a,b€R,i=√-1 and also to state the value of a and b,

z=2+i|(3-i)(1+2i)

z = \frac{2 + i}{(3 - i)(1 + 2i)}  \\  \\ z =  \frac{2 + i}{3 + 6i - i - 2 {i}^{2} }  \\  \\ z = \frac{2 + i}{3 + 6i - i - 2( - 1) } \\  \\ z =  \frac{2 + i}{5 + 5i}  \\  \\ z =   \frac{1}{5} \Big(\frac{2 + i}{1 + i} \Big) \times \Big( \frac{1 - i}{1 - i} \Big) \\  \\  z= \frac{1}{5} \Big(\frac{(2 + i)(1 - i)}{ {1}^{2}   -  {(i)}^{2} } \Big)  \\  \\ z =  \frac{1}{5}  \Big(\frac{2 - 2i + i -  {i}^{2} }{2}\Big)  \\  \\ z =  \frac{1}{10} (3 - i) \\  \\ z =  \frac{3}{10}  - i \frac{1}{10}  \\  \\

so,the value of a and b are 3/10 and -1/10

Hope it helps you.

Similar questions