Math, asked by zubinjohn, 1 year ago

Express the following in the form of a+ib

i²⁰¹⁹

Answers

Answered by AbhijithPrakash
9

Answer:

i^{2019}=-i

Step-by-step explanation:

i^{2019}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c}

\gray{i^{2019}=i^{2018}i}

=i^{2018}i

\gray{\mathrm{Apply\:exponent\:rule}:\quad \:a^{bc}=\left(a^b\right)^c}

\gray{i^{2018}=\left(i^2\right)^{1009}}

=i\left(i^2\right)^{1009}

\gray{\mathrm{Apply\:imaginary\:number\:rule}:\quad \:i^2=-1}

=\left(-1\right)^{1009}i

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(-a\right)^n=-a^n,\:\mathrm{if\:}n\mathrm{\:is\:odd}}

\gray{\left(-1\right)^{1009}=-1^{1009}}

=-1^{1009}i

\gray{1^{1009}=1}

=-1i

\gray{\mathrm{Multiply:}\:1i=i}

=-i

Similar questions